数列的定义和与函数的关系(2)
⑥ 若等差数列的项数为$2n$$(n∈\mathbf{N}^*)$,则$S_{2n}=n(a_n+a_{n+1})$,且$S_偶-S_奇=nd$,$\frac{S_偶}{S_奇}=\frac{a_{n+1}}{a_n}$。若等差数列的项数为$2n-1(n∈\mathbf{N}^*)$,则$S_{2n-1}=(2n-1)a_n$($a_n$为中间项),且$S_奇-S_偶=a_n$,$\frac{S_偶}{S_奇}=\frac{n-1}{n}$(其中$S_奇=na_n$,$S_偶=(n-1)a_n$)。
10、等比数列
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母$q$表示$(q≠0)$,即$\frac{a_n}{a_{n-1}}=q(n\geqslant2)$。
(1)等比数列的通项公式
若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,则这个等比数列的通项公式是$a_n=a_1q^{n-1}(a_1,q≠0)$。
注:由$a_n=a_1q^{n-1}$,$a_m=a_1q^{m-1}$,可推出$\frac{a_n}{a_m}=q^{n-m}$,即$a_n=a_mq^{n-m}$。
所以有:① 在已知等比数列$\{a_n\}$中任一项$a_m$及公比$q$的前提下,可以使用$a_n=a_mq^{n-m}$求得等比数列中的任意项$a_n$。
② 已知等比数列$\{a_n\}$中的$a_m$和$a_n$两项,就可以使用$\frac{a_n}{a_m}=q^{n-m}$求出公比。
(2)等比中项
如果在$a$与$b$中间插入一个数$G(G≠0)$,使$a$,$G$,$b$成等比数列,那么$G$叫做$a$与$b$的等比中项。
若$G$是$a$与$b$的等比中项,则$\frac{G}{a}=\frac{b}{G}$,即$G^2=ab$,$G=±\sqrt{ab}$。
注:(1)只有非零同号的两数才有等比中项,并且等比中项有两个,它们互为相反数。(2)在等比数列$\{a_n\}$中,从第2项起,每一项(有穷等比数列末项除外)是前一项与后一项的等比中项,即$a^2_n=a_{n+1}a_{n-1}(n\geqslant2,n∈\mathbf{N}^*)$。
(3)等比数列的性质
设$\{a_n\}$是公比为$q$的等比数列,那么
① 数列$\{a_n\}$是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项之积,即$a_1a_n=a_2a_{n-1}=a_3a_{n-2}=$$\cdots=$$a_ma_{n-m+1}$。
② 若$m$,$n$,$p$$(m,n,p∈\mathbf{N}^*)$成等差数列,则$a_m$,$a_n$,$a_p$成等比数列,即$a^2_n=a_ma_p$。
③ 若$m+n=p+q(m,n,p,q∈\mathbf{N}^*)$,则$a_ma_n=a_pa_q$。特别地,若$m+n=2p$,则$a_ma_n=a^2_p$。
④ 数列$\{λa_n\}$($λ$为不等于0的常数)仍是公比为$q$的等比数列;
数列$\begin{Bmatrix}\dfrac{1}{a_n}\end{Bmatrix}$是公比为$\frac{1}{q}$的等比数列;
数列$\{|a_n|\}$是公比为$|q|$的等比数列;
若数列$\{b_n\}$是公比为$q^′$的等比数列,则数列$\{a_n·b_n\}$是公比为$q·q^′$的等比数列。
⑤ 当数列$\{a_n\}$是各项都为正数的等比数列时,数列$\{\lg a_n\}$是公差为$\lg q$的等差数列。
⑥ 在数列$\{a_n\}$中,连续相邻$k$项的和或积构成公比为$q^k$或$q^{k^2}$的等比数列(相邻$k$项的和都不为0)。
⑦ 在数列$\{a_n\}$中,每隔$k(k∈\mathbf{N}^*)$项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为$q^{k+1}$。
(4)等比数列的前$n$项和公式
若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,则等比数列$\{a_n\}$的前$n$项和公式为$S_n=\begin{cases}na_1,\quad\quad\quad\quad\quad\ q=1\\\frac{a_1(1-q^n)}{1-q}=\frac{a_1-a_nq}{1-q},q≠1。\end{cases}$
注:当$q≠1$时,若已知$a_1$,$q$,$n$,则用$S_n=\frac{a_1(1-q^n)}{1-q}$较方便;若已知$a_1$,$q$,$a_n$,则用$S_n=\frac{a_1-a_nq}{1-q}$较方便。
等比数列前$n$项和公式可看作函数关系$S_n=kq^n-k$($k$,$q$是不为0的常数,且$q$不为1,$n∈\mathbf{N}^*$,它是关于$n$的指数类型的函数。
等比数列前$n$项和公式分$q=1$和$q≠1$两种情况,,因此用公式求和时,若公比$q$不确定,则要对公比进行分类讨论。
(5)等比数列前$n$项和的性质
① 若$\{a_n\}$为等比数列,$S_n$为其前$n$项和,当$q≠-1$时,$S_n$,$S_{2n}-S_n$,$S_{3n}-S_{2n}$,$\cdots$,仍构成等比数列,即有$(S_{2n}-S_n)^2=$$S_n·(S_{3n}-S_{2n})$,公比为$q^n$;当$q=-1$且$k$为奇数时$S_k$,$S_{2k}-S_k$,$S_{3k}-S_{2k}$,$\cdots$,可构成等比数列。
② 在等比数列中,若项数为$2n(n∈\mathbf{N}^*)$,$S_偶$与$S_奇$分别为偶数项与奇数项的和,则$\frac{S_偶}{S_奇}=q$;若项数为$2n+1$,则$\frac{S_奇-a_1}{S_偶}=q$。
③ 若$\{a_n\}$是公比为$q$的等比数列,则$S_{n+m}=S_n+q^n·S_m$。
④ 在等比数列$\{a_n\}$中,当$q=1$时,$\frac{S_n}{S_m}=\frac{n}{m}$;当$q≠1$时,$\frac{S_n}{S_m}=\frac{1-q^n}{1-q^m}$。
二、数列的相关例题
记$S_n$为等差数列$\{a_n\}$的前$n$项和。已知$S_4=0$,$a_5=5$,则____
A.$a_n=2n-5$
B.$a_n=3n-10$
C.$S_n=2n^2-8n$
D.$S_n=\frac{1}{2}n^2-2n$
答案:A
解析:由已知可得$\begin{cases}S_4=4a_1+\frac{d}{2}×4×3=0,\\a_5=a_1+4d=5,\end{cases}$解得$\begin{cases}a_1=-3,\\d=2。\end{cases}$$∴a_n=2n-5$,故选A。