高中数学解题技巧有哪些 解题方法汇总(2)
排除法,利用信息排除错误答案:在选择题中,通过分析题目所给的条件和选项,可以排除明显错误的答案。在一些函数图像选择题中,可以根据函数的性质,如奇偶性、单调性、定义域等,排除不符合条件的选项。据统计,在一些高考模拟试卷中,使用排除法可以快速解决约30%的选择题。
特殊值检验法,特殊情况验证:对于一些选择题,可以选取特殊值进行验证。在求函数解析式或者方程的选择题中,可以选取一些特殊的数值代入选项进行检验。当函数中出现参数时,可以选取特殊的参数值来验证选项的正确性。这种方法在一些含有参数的选择题中非常有效,能够快速缩小答案的范围。
极端性原则,分析极端状态:将所要研究的数学问题进行极端分析,使因果关系更加明显。在一些几何问题中,可以考虑图形的极端情况,如点在特殊位置、线段长度取极值等。在求三角形面积的最大值问题中,可以考虑三角形变为直角三角形等极端情况,从而快速得出答案。
顺推破解法,直接演算推理:对于一些较为简单的选择题,可以直接进行演算推理。按照题目所给的条件,逐步进行计算和推理,得出答案。这种方法适用于一些基础的数学问题,如计算函数值、求解方程等。
逆推验证法,代入答案验证:从选项出发,将各选项逐一带入题设进行检验。即将各选项分别作为条件,去验证命题是否成立。在一些方程的选择题中,可以将选项中的值代入方程,看是否满足方程。这种方法在一些复杂的方程或不等式问题中非常实用。
正难则反法,从反面解题:当正面解题较为困难时,可以从反面进行思考。在证明一个命题不成立时,可以考虑其反面命题成立的情况,然后推出矛盾。这种方法在一些证明题和选择题中都有广泛的应用。
数形结合法,借助图形解题:数形结合是数学中一种非常重要的思想方法。在选择题中,可以通过画出图形,将抽象的数学问题直观化。在解决不等式问题时,可以画出数轴,通过数轴上的区间来确定不等式的解集。据统计,在高考数学选择题中,约有40%的题目可以通过数形结合的方法快速解决。
递推归纳法,寻找规律解题:对于一些数列问题或具有规律的问题,可以采用递推归纳法。通过观察前几项的规律,推导出一般的通项公式或递推公式。在求数列的通项公式时,可以通过观察前几项的数值,找出规律,然后进行归纳总结。
特征分析法,分析题设特点:分析题目所给的条件和问题的特点,找出解题的关键。在一些几何问题中,可以分析图形的对称性、特殊角度等特征,从而找到解题的突破口。这种方法需要考生具备较强的观察能力和分析能力。
估算法,估算求解:对于一些计算较为复杂的选择题,可以采用估算法。通过对数值进行估算,快速确定答案的范围。在计算一些无理数的近似值时,可以采用估算法来确定答案的范围。
(二)九大解题技巧
配法,恒等变形方法:配方法是通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。它在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到。对于二次函数,通过配方可以化为的形式,从而更方便地研究函数的性质。
因式分解法,重要数学工具:因式分解是把一个多项式化成几个整式乘积的形式,是恒等变形的基础。它在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有很多,如提取公因式法、公式法、分组分解法、十字相乘法等。分解因式,可以采用十字相乘法,分解为。
换元法,简化复杂式子:换元法是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。对于方程,可以设,则,原方程就变为,从而将无理方程转化为一元二次方程求解。
判别式法与韦达定理,广泛应用:一元二次方程根的判别式,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等。已知方程的两根为、,则,。
待定系数法,确定形式求解:待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:设、列、解、写。已知二次函数图像经过三个点、、,设二次函数解析式为,将三个点的坐标代入解析式,得到一个三元一次方程组,解出、、的值,从而确定二次函数的解析式。
构造法,构造辅助元素解题:构造法是通过对条件和结论的分析,构造辅助元素,如一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决。在证明不等式时,可以构造函数,利用函数的单调性来证明不等式。
面积法,几何证明常用:面积法是利用平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,来证明或计算平面几何题的方法。它的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。在证明三角形相似时,可以利用相似三角形的面积比等于相似比的平方这一性质来进行证明。
几何变换法,化繁为简:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。中学数学中所涉及的变换主要是初等变换,包括平移、旋转、对称。对于一些几何图形的问题,可以通过平移、旋转、对称等变换,将图形转化为熟悉的图形,从而更容易求解。
反证法,间接证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。证明“在一个三角形中,至少有一个内角小于或等于”,可以采用反证法,假设三角形的三个内角都大于,然后推出矛盾。
(三)解题方法与技巧总结
不等式、方程或函数题型思路:先直接思考后建立三者的联系,考虑定义域,其次使用“三合一定理”。
研究含参初等函数要点:抓住无论参数怎么变化一些性质都不变的特点,如函数过的定点、二次函数的对称轴等。
求零点函数方法:出现超越式,优先选择数形结合的思想方法。
恒成立问题解法:可以转化成最值问题或者利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想。
选择题与填空题技巧:选择与填空中出现不等式的题,应优先选特殊值法。
利用几何意义求最值方法:在利用距离的几何意义求最值得问题中,应考虑两点之间线段最短,常用此结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
求参数取值范围方法:应该建立关于参数的不等式或者等式,用函数的值域或定义域或者解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。
解三角形要点:确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。重视内角和定理的使用。
求双曲线或椭圆离心率方法:建立关于、、之间的关系等式即可。
解三角形确认三角形及定理:解三角形时,确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
数列“知三求二”:在数列的五个量、、、、(等差数列)或(等比数列)中,只要知道三个量就可以求出另外两个量,简称“知三求二”。